This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

Solid Phase Epitaxy of Rutile-type GeO₂ on TiO₂ (001)

Yo Nagashima, 1 Shohei Osawa, 2 Daichi Oka, 2 and Yasushi Hirose^{2*}

Bunkyo, Tokyo 113-0033, Japan

1. Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, 5

2. Department of Chemistry, Graduate School of Science, Tokyo Metropolitan 7

8 University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

* Author to whom correspondence should be addressed: hirose@tmu.ac.jp

12 Abstract

2

3 4

6

9 10

11

13

14

15

16

17 18

19 20

21

22

23

24

25

26

Rutile-type GeO₂ (r-GeO₂) is an ultra-wide bandgap oxide semiconductor, which attracts growing interest because of its ambipolar dopability and high carrier mobility predicted by recent first principles calculations. While epitaxial thin films of r-GeO₂ have been synthesized using various vapor phase epitaxy techniques, desorption of germanium suboxide limits the growth conditions in a narrow range. Here, we demonstrated solid phase epitaxy (SPE) of r-GeO2 thin films on TiO2 (001) substrates. Amorphous GeO2 thin films fabricated using pulsed laser deposition at \leq 250 °C were crystallized by post-deposition annealing at 700 °C. X-ray diffraction and cross-sectional scanning transmission electron microscopy analysis revealed that the amorphous GeO2 thin films epitaxially crystallized to r-GeO2 phase without any impurity phases. The epitaxial cyrstallization of r-GeO2 was significantly promoted by introducing a seed layer of a rutile Ge_xSn_{1-x}O₂ epitaxial thin film, which coherently grown on the TiO₂ substrate, probably due to chemical interactions between the amorphous film and the seed layer. The crystallinity of the SPE-grown r-GeO2 was comparable to that synthesized via vapor phase epitaxy, indicating that the SPE is an alternative route for synthesizing r-GeO₂ epitaxial thin films.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

1

2

3

4

5 6

8

9

10

11

12

13

14

15 16

17

18

19 20

21

22

23 24

25

26

Ultra-wide bandgap semiconductors, of which bandgap (Eg) is larger than conventional wide bandgap semiconductors such as GaN and SiC, have been extensively studied for power electronics and ultraviolet optoelectronics applications owing to their high electric breakdown field and bandgap energy corresponding to ultraviolet light.¹⁻³ Among ultra-wide bandgap semiconductors, rutile-type GeO₂ (r-GeO₂) (E_g~4.7 eV)⁴ attracts growing interest because of its advantageous features for power electronics applications, such as ambipolar dopability and high carrier mobility, which are predicted by first-principles calculations, 5-8 as well as high thermal conductivity.9

To experimentally validate these unique properties expected for r-GeO2 and to fabricate a device structure, synthesis of r-GeO2 in both bulk single crystal and epitaxial thin film forms is indispensable. Bulk single crystals of r-GeO2 have been synthesized since the 1960s by chemical vapor transport and solution processes. ^{6,10-13} Recently, n-type dopability with high carrier electron concentration of up to 2.2×10²⁰ cm⁻³ was reported for Sb-doped r-GeO₂ bulk single crystals synthesized via top seeded solution growth. 13 On the other hand, there is no report on successful doping in r-GeO2 epitaxial thin films, although various vapor phase deposition techniques such as molecular beam epitaxy (MBE),14 pulsed laser deposition (PLD),15,16 mist chemical vapor deposition, 17,18 metal-organic chemical vapor deposition, 19 and low-pressure chemical vapor deposition²⁰ have been proposed after the first demonstration using MBE.¹⁴

There are two main difficulties in synthesizing r-GeO2 thin films. The first one is thermodynamic stability competing against the α -quartz phase and the amorphous phase, of which formation energies are comparable to that of r-GeO₂ phase. 6,14 The second one is the desorption of germanium suboxide (GeO), 21-23 which limits the growth parameters (e.g. growth temperature and partial oxygen pressure during the deposition) in a narrow range. 14 As a result, thin films of r-GeO2 frequently suffered from the coexistence of the other phases and/or poorly crystallized regions. 15,24,25

In this study, we demonstrated solid phase epitaxy (SPE) of r-GeO2 thin films on TiO2

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

(001) substrates as an alternative route for synthesizing r-GeO₂ epitaxial thin films. In the SPE process, amorphous GeO₂ films were crystallized epitaxially from the film/substrate interface by post-deposition annealing. In the previous studies on the crystallization of amorphous GeO₂ into r-GeO₂, the synthesized films were polycrystalline, 26,27 some of which are mixed phase with α -quartz phase or Ge. It was revealed that the SPE of the r-GeO₂ was significantly enhanced by introducing an epitaxial rutile Ge_xSn_{1-x}O₂ (GSO) film as a seed layer, on which epitaxial crystallization of r-GeO₂ was promoted probably due to chemical interactions between the amorphous film and the seed layer.

The SPE of r-GeO₂ was conducted by the following three steps: (Step 1) A \sim 10-15 nm-thick (001)-oriented rutile $Ge_xSn_{1-x}O_2$ (GSO) thin film (seed layer) was epitaxially grown on a rutile TiO_2 (001) substrate to promote the epitaxial crystallization as discussed later. (Step 2) An amorphous GeO_2 film was deposited on the GSO seed layer at low temperature. (Step 3) The amorphous GeO_2 film was crystallized by annealing inside the growth chamber without exposure to air to avoid degradation of the amorphous by humidity.

The GSO seed layer (Ge content $x\sim0.4$) and the amorphous GeO₂ film were fabricated by PLD. The growth condition of the GSO seed layer was described elsewhere. ¹⁸ The amorphous GeO₂ thin films were deposited at substrate temperature of 250 °C by ablating a ceramic pellet of GeO₂ using a KrF excimer laser (Coherent, COMPex pro 102). The pulse repetition rate and the laser fluence were set at 2 Hz and 1-2 J·cm⁻²·pulse⁻¹, respectively, to control the deposition rate at \sim 100 nm/h. The base pressure in the growth chamber was lower than 1×10^{-7} Torr. Partial O₂ pressure was kept at 1×10^{-4} Torr during the deposition of amorphous GeO₂ thin films and the post-annealing for crystallization, where the supplied O₂ gas was activated into radicals by an electron cyclotron resonance plasma source (Tectra, Gen2). It is noted that GeO₂ film deposited at substrate temperature of 600 °C was totally evaporated during the deposition (Supplemental Fig. S1).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

Crystal structure and density of the GeO₂ thin films were evaluated by X-ray diffraction (XRD) and X-ray reflection (XRR) measurements, respectively, using a four-circle diffractometer (Bruker AXS, D8 DISCOVER). The structure of the amorphous GeO₂ thin film was evaluated by Raman spectroscopy (Renishaw, inVia Qontor). The microscopic structures and the chemical composition distribution in the r-GeO₂ thin film were investigated by cross-sectional scanning transmission electron microscopy (STEM) (JEOL, JEM-ARM200F-B, 200 kV) with a detector for energy dispersive X-ray spectroscopy (EDS) (Thermo Fisher Scientific, NSS). The specimen for STEM observation was prepared by using a focused ion beam system (Hitachi High-Tech, NB5000). The surface morphologies of the films were observed by atomic force microscopy (AFM) (SII-nanotechnology, SPI4000 with SPA400). Thicknesses of the thin films were examined by XRR measurement or using a stylus surface profiler (Kosaka Laboratory Ltd., Surfcorder ET200 A).

Figure 1a shows θ -2 θ XRD patterns of the GeO₂ thin films deposited at 250 °C on the GSO seed layer and annealed at various temperature. It is noted that the GeO₂ film deposited at 600 °C was totally evaporated during the deposition (Supplemental Fig. S1). The GeO₂ thin film annealed at 600 °C showed diffraction peaks only from the GSO seed layer and the TiO₂ substrate, indicating that the GeO₂ film was amorphous. On the other hand, a clear 002 diffraction peak of r-GeO₂ was observed for the film annealed at 700 and 750 °C without the diffraction peaks from the α -quartz type GeO₂ nor the r-GeO₂ with different crystallographic orientations. XRD reciprocal space map (RSM) of the r-GeO₂ films around the 112 diffraction (Fig. 1b) and phi scan measurement (Fig. 1c) verified the epitaxial growth of (001)-oriented r-GeO₂ without any rotational domains. Epitaxial growth of the r-GeO₂ was also confirmed at partial O₂ pressure of 1×10^{-3} Torr without the plasma activation (Supplemental Fig. S2). The GeO₂ film annealed at 800 °C showed diffraction peaks only from the substrates (Fig. 1a) indicating the evaporation of the r-GeO₂ film and the GSO seed layer during the annealing. Partial evaporation of GeO₂ layer

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

was also suggested in the films annealed at 700 and 750 °C (Supplemental Table S3). Based on 2 these results, controlling the temperature of the post deposition annealing at 700-750 °C is required for the SPE of r-GeO2. Although this temperature range is not wider than that of vapor 3 4 phase epitaxy, the high temperature limit could be extended by suppressing the evaporation of 5 GeO₂ under more oxidative conditions as reported in the previous studies on the crystallization of 6 amorphous GeO₂ thin films. ^{26,27} It is also speculated that slightly introducing O vacancies in the 7 amorphous GeO2 thin film, which kinetically enhances atomic diffusion, enables the crystallization at lower temperature than 700 °C:28 Off-stoichiometry of the amorphous GeO2 thin 8 9 film was not observed by Raman spectroscopy (Supplemental Figure S4). 10 The lattice constants of the r-GeO₂ epitaxial thin films determined from the RSM (a =11 4.410 Å, c = 2.859 Å) were close to those reported for bulk r-GeO₂ (a = 4.3975 Å, c = 2.8625Å)29, indicating that the r-GeO2 film was almost relaxed. The full width of half maximum 12 (FWHM) of the rocking curve of 002 diffraction was 0.365° (Fig. 1d), which is comparable to the 13 values reported for the r-GeO2 epitaxial thin films synthesized from vapor phase using PLD. 15,16 14 15 For the SPE of r-GeO2 on TiO2, introducing the GSO seed layer is crucial. Most of the 16 amorphous films deposited directly on the TiO₂ (001) substrate did not crystallize by the annealing 17 at 700 °C. Even in the case of epitaxially crystallized film (Fig. 1a), the crystallinity of the film was lower than those grown on the GSO seed layer: FWHM of the rocking curve of 002 18 19 diffraction increased from 0.365° to 1.03° (Fig. 1d). Notably, the GSO seed layer coherently grew 20 on the TiO₂ substrate without strain relaxation (a = 4.594 Å, c = 3.088 Å) as shown in the RSM 21 (Fig. 1b), meaning that lattice mismatch between the r-GeO₂ thin film and the TiO_2 substrate (a =22 4.594 Å, c = 2.959 Å) was not reduced by the insertion of the GSO layer. This is in stark contrast to the previous reports on the epitaxial growth of r-GeO₂, ^{14,18} where the introduction of a GSO 23 24 buffer layer stabilizes rutile structure through the reduction of the lattice mismatch between the r-25 GeO_2 thin film and the substrate. This result suggested that the epitaxial nucleation of the $r\text{-}GeO_2$ 26 at the film/substrate interface was dominated not only by the elastic energy originating from the

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

lattice mismatch but also by the chemical interactions between the film and the substrate. $The\ microscopic\ structure\ of\ the\ r\text{-}GeO_2\ thin\ film\ was\ further\ investigated\ by\ cross-$

sectional STEM observation. Fig. 2a shows the cross-sectional high-angular annular dark field (HAADF) images of the r-GeO₂ epitaxial thin film grown on the GSO seed layer. Selected area electron diffraction patterns (Figs. 2b, c) show diffraction spots only from the (001)-oriented r-GeO₂, confirming the epitaxial crystallization of r-GeO₂. Z-contrast in the HAADF-STEM image and the results of EDS mapping (Fig. 3) show a sharp and flat interface between the r-GeO₂ thin film and the GSO seed layer verifying that no interdiffusion occurred at the interface during the SPE process. The HAADF-STEM images of the r-GeO₂ film show almost no spatial inhomogeneity in its contrast except for the small regions probably corresponding to dislocations and grain boundaries. Considering the large difference in atomic density between the amorphous and r-GeO₂, the amorphous GeO₂ film was fully crystallized into the rutile phase from the film/seed layer interface to the film surface.

The θ -2 θ peak and the rocking curve of the GSO seed layer became broader after the post deposition annealing (Supplemental Figure S5), which indicates degradation of crystallinity during the annealing. Based on the results of STEM-EDS mapping (Fig. 3), this degradation did not originate from the interdiffusion between the GSO and the GeO₂, which was also supported by a negligible shift in the XRD θ -2 θ peak of the seed layer after the annealing (Fig. S2). Because the GSO seed layer annealed without the amorphous GeO₂ layer also showed a broadening of the XRD peaks (Fig. S2), we speculate that the deterioration of the seed layer was caused by the thermal instability of GSO.³⁰

Figure 4 shows AFM images of the amorphous GeO_2 and the SPE-grown r-GeO₂ thin films (thickness of ~120 nm). While the surface of the amorphous GeO_2 (Fig. 4a) was smooth (root-mean-square roughness $r_{RMS} = 0.24$ nm), grain-like morphology appeared after the crystallization (Fig. 4b). Surface roughness of the SPE-grown r-GeO₂ thin film ($r_{RMS} = 3.94$ nm) was larger than the amorphous GeO_2 ($r_{RMS} = 0.24$ nm), although the value was comparable to or

ACCEPTED MANUSCRIPT

Applied Physics Letters

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

Ľ	>
Ь	i.
cc	5
⇌	
ĸ	
Α.	7
\simeq	4
_	2
10	S
-	2
C	5
cc	5
Ë	5
\succeq	_
7	
\subset	5
_	
÷	3
$\overline{}$	1
⋍	!
ᆮ	3
U)
◁	۲
ш	н
	ī
_	e.
C)
F	
⊢	-
'n	1
Ξ	7
9	Ļ,
00	
$\underline{\vee}$	2
Ŧ	
-	-
Н	-
	÷
ш	ä,
⊢	-
-	
	=
C	5

15

1	slightly better than the values reported for r-GeO ₂ thin films grown by vapor phase epitaxy. ^{10,19,20}
2	The increase of the roughness is, at least in part, due to the evaporation of GeO during the
3	annealing (Supplemental Table S3), although it might also be attributable to the large difference
4	in density between the amorphous GeO_2 thin films (~4.2 g cm ⁻³ , slightly larger than bulk GeO_2
5	glass $^{31-33}$) and the r-GeO ₂ epitaxial thin films (\sim 6.2 g cm $^{-3}$, almost the same as bulk r-GeO ₂ of
6	6.27 g cm^{-3}).
7	
8	In summary, (001)-oriented r-GeO $_2$ epitaxial thin films were grown on TiO $_2$ (001) substrates
9	by the SPE of amorphous GeO ₂ thin films deposited using PLD. The epitaxial crystallization of
0	the amorphous GeO_2 film was significantly enhanced by the insertion of an epitaxial GSO seed
1	layer. The crystallinity and surface roughness of the SPE-grown r-GeO ₂ thin films were almost
2	comparable to the r-GeO ₂ epitaxial thin films synthesized by vapor phase epitaxy. These results
3	demonstrate that the SPE is a useful technique with a potential for enlarging the process window
4	of r-GeO ₂ , which will promote future studies on its physical properties and device applications.

ACCEPTED MANUSCRIPT

Applied Physics Letters

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

10
12
9
\overline{z}
8
70
8
\approx
=
0
=
$\overline{}$
\simeq
ш
S
⋖
ш
\equiv
$\overline{\Box}$
=
\sim
5
4
S
=
亡
50
ш
=
\circ
111
70
4
\mathbf{H}
\equiv

1	Supplementary Material
2	See the supplementary Material for details on the XRD pattern of the GeO2 deposited
3	at 600 °C, XRD patterns of the r-GeO $_2$ thin films crystallized without the plasma
4	activation of O_2 gas, thickness of the GeO_2 layer before and after crystallization, Raman
5	spectrum of the amorphous GeO ₂ layer, and XRD patterns of the GSO seed layer after the
6	post deposition annealing.
7	
•	
8	This work was supported in part by project JPNP20004 subsidized by the New Energy and
9	Industrial Technology Development Organization (NEDO), Tokyo Ohka Foundation for The
10	Promotion of Science and Technology, and Advanced Research Infrastructure for Materials and
11	Nanotechnology in Japan (ARIM) of the Ministry of Education, Culture, Sports, Science and
12	Technology (MEXT) Proposal Number JPMXP1223NM0167. We thank Dr. Fumihiko Uesugi
13	and Yoshiko Nakayama for the STEM analyses.
14	
15	

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

References

- 3 J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan,
- 4 C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S.
- 5 Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan,
- 6 A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy,
- 7 Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, and J.A. Simmons, Adv. Electron. Mater. 4,
- 8 1600501 (2018).
- 9 M. Kneissl, T.-Y. Seong, J. Han, and H. Amano, Nat. Photonics 13, 233 (2019).
- 10 ³ J.B. Varley, B. Shen, and M. Higashiwaki, J. Appl. Phys. **131**, 230401 (2022).
- ⁴ M. Stapelbroek and B.D. Evans, Solid State Commun. **25**, 959 (1978).
- 12 ⁵ K. Bushick, K.A. Mengle, S. Chae, and E. Kioupakis, Appl. Phys. Lett. **117**, 182104 (2020).
- 13 ⁶ C.A. Niedermeier, K. Ide, T. Katase, H. Hosono, and T. Kamiya, J. Phys. Chem. C **124**, 25721
- 14 (2020).
- 15 S. Chae, J. Lee, K.A. Mengle, J.T. Heron, and E. Kioupakis, Appl. Phys. Lett. 114, 102104
- 16 (2019).
- 17 ⁸ K.A. Mengle, S. Chae, and E. Kioupakis, J. Appl. Phys. **126**, (2019).
- 18 ⁹ S. Chae, K.A. Mengle, R. Lu, A. Olvera, N. Sanders, J. Lee, P.F.P. Poudeu, J.T. Heron, and E.
- 19 Kioupakis, Appl. Phys. Lett. 117, 102106 (2020).
- 20 ¹⁰ V.G. Hill and L.L.Y. Chang, Am. Mineral. **53**, 1744 (1968).
- 21 ¹¹ D.E. Swets, J. Cryst. Growth **8**, 311 (1971).
- 22 12 S. Chae, L.A. Pressley, H. Paik, J. Gim, D. Werder, B.H. Goodge, L.F. Kourkoutis, R. Hovden,
- 23 T.M. McQueen, E. Kioupakis, and J.T. Heron, J. Vac. Sci. Technol. A 40, (2022).
- 24 ¹³ Z. Galazka, R. Blukis, A. Fiedler, S. Bin Anooz, J. Zhang, M. Albrecht, T. Remmele, T. Schulz,
- 25 D. Klimm, M. Pietsch, A. Kwasniewski, A. Dittmar, S. Ganschow, U. Juda, K. Stolze, M.
- 26 Suendermann, T. Schroeder, and M. Bickermann, Phys. Status Solidi (B) 2400326 (2024).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

- 1 ¹⁴ S. Chae, H. Paik, N.M. Vu, E. Kioupakis, and J.T. Heron, Appl. Phys. Lett. 117, 072105 (2020).
- 2 ¹⁵ G. Deng, K. Saito, T. Tanaka, M. Arita, and Q. Guo, Appl. Phys. Lett. 119, 182101 (2021).
- 3 ¹⁶ G. Deng, Y. Huang, Z. Chen, K. Saito, T. Tanaka, M. Arita, and Q. Guo, Mater. Lett. 326,
- 4 132945 (2022).
- 5 ¹⁷ H. Takane and K. Kaneko, Appl. Phys. Lett. **119**, 062104 (2021).
- 6 ¹⁸ K. Shimazoe, T. Ogawa, and H. Nishinaka, Appl. Phys. Express 17, 105501 (2024).
- 7 ¹⁹ I. Rahaman, B.G. Duersch, H.D. Ellis, M.A. Scarpulla, and K. Fu, Appl. Phys. Lett. 125,
- 8 102103 (2024).
- 9 ²⁰ F. Golbasi, B. Liu, J. Hwang, and F. Akyol, J. Alloys Compd. **1014**, 178591 (2025).
- 10 ²¹ W. Chen, K. Egbo, J. Kler, A. Falkenstein, J. Lähnemann, and O. Bierwagen, APL Mater. 13,
- 11 011107 (2025).
- 12 ²² W. Chen, K. Egbo, H. Tornatzky, M. Ramsteiner, M.R. Wagner, and O. Bierwagen, APL Mater.
- **13 11**, 071110 (2023).
- 14 ²³ C.H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, Appl. Phys. Express
- **15 2**, 071404 (2009).
- 16 ²⁴ H. Takane and K. Kaneko, Appl. Phys. Lett. **120**, 099903 (2022).
- 17 ²⁵ H. Takane, Y. Ota, T. Wakamatsu, T. Araki, K. Tanaka, and K. Kaneko, Phys. Rev. Mater. 6,
- 18 084604 (2022).
- 19 ²⁶ P.G. Nalam, D. Das, S. Tan, and C. V. Ramana, ACS Appl. Electron. Mater. 4, 3115 (2022).
- 20 ²⁷ A.M. Abed and R.L. Peterson, J. Vac. Sci. Technol. A **42**, 063403 (2024).
- 21 ²⁸ S.K. Wang, K. Kita, T. Nishimura, K. Nagashio, and A. Toriumi, Jpn. J. Appl. Phys. **50**, 10PE04
- 22 (2011).
- 23 ²⁹ W.H. Baur and A.A. Khan, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 27, 2133
- 24 (1971).
- 25 ³⁰ F. Liu, N.J. Szymanski, K. Noordhoek, H. Shin, D. Kim, C.J. Bartel, and B. Jalan, Nano Lett.
- **26 25**, 299 (2025).

ACCEPTED MANUSCRIPT

Applied Physics Letters

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

- ³¹ S. Petitgirard, G. Spiekermann, K. Glazyrin, J. Garrevoet, and M. Murakami, Phys. Rev. B **100**,
- 2 214104 (2019).
- 3 ³² M. Akaogi, T. Suzuki, R. Kojima, T. Honda, E. Ito, and I. Nakai, Geophys. Res. Lett. 25, 3635
- 4 (1998)
- 5 ³³ K. Kamiya, T. Yoko, Y. Itoh, and S. Sakka, J. Non. Cryst. Solids **79**, 285 (1986).
- 6

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

1 2 3

4 5

6

7

8

9

10

11

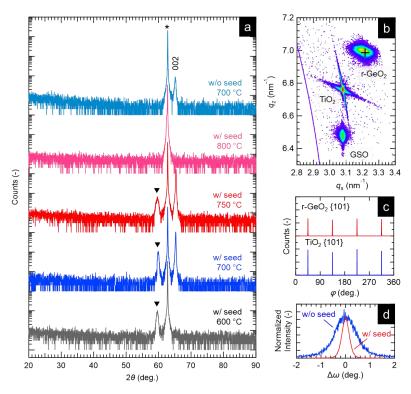
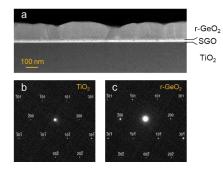
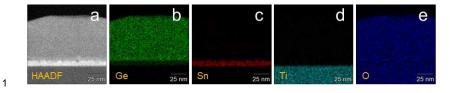



Figure 1. (a) θ -2 θ XRD patterns of the GeO₂/GSO (001)/TiO₂ (001) (w/ seed) after the post deposition annealing at 600, 700, 750 and 800 °C. Diffraction pattern of the GeO2/TiO2 (001) (w/o seed) crystallized at 700 °C is also plotted for comparison. Asterisk and triangles denote the diffraction peaks of the TiO2 substrate and the GSO seed layer, respectively. (b) RSM around 112 diffraction peak of the r-GeO₂ (001)/GSO (001)/TiO₂ (001) crystallized at 700 °C. Cross indicates the peak position calculated from the lattice constants of bulk r-GeO₂. (c) Phi-scan of the 101 diffraction for the r-GeO₂ (001)/GSO (001)/TiO₂ (001). (d) Rocking curves of 002 diffraction for r-GeO₂ (001) epitaxial thin films crystallized at 700 °C with and without the GSO seed layer.

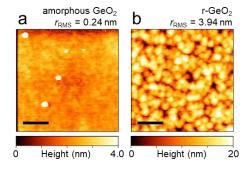
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.


PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0271675

1 2

- 3 Figure 2. (a) Cross-sectional HAADF STEM image and (b, c) SAED patterns of the r-GeO₂
- 4 (001)/GSO (001)/TiO₂ (001) synthesized by the SPE process. Diffraction pattern (b) and (c) were
- 5 obtained for the TiO₂ substrate and the r-GeO₂ film, respectively along the [010] zone axis.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.



- Figure 3. (a) STEM-HAADF image of the EDS mapping area of the r-GeO₂ (001)/GSO
- 4 (001)/TiO₂ (001). (b-e) Elemental maps constructed from the EDS signals of (b) Ge K-line, (c)
- 5 Sn L-line, (d) Ti K-line, and (e) O K-line.

2

6

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

- $\textbf{3} \qquad \textbf{Figure 4.} \text{ AFM image of (a) amorphous } \text{GeO}_2 \text{ and (b) } \text{r-GeO}_2 \text{ epitaxial thin film. The scale bar is}$
- 4 500 nm.